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Abstract

To find out how the representations of structured visual objects depend
on the co-occurrence statistics of their parts, we exposed subjects to a
set of composite images with controlled conditional probabilities of the
constituent fragments. We then compared the part verification response
times for various probe/target combinations before and after the expo-
sure. With composite probes, the drop in verification RT following ex-
posure was much larger for targets that contained pairs of fragments per-
fectly predictive of each other, compared to those that did not; for lone-
fragment probes, this difference was reversed. This pattern of results is
consistent with the principle according to which objects should be treated
as wholes, unless their parts are observed sufficiently frequently in more
than one configuration.

1 Motivation

How does the human visual system decide for which objects should it maintain distinct
and persistent internal representations of the kind typically postulated by theories of object
recognition? Consider, for example, the image shown in Figure 1, left. This image can
be represented as a monolithic hieroglyph, a pair of Chinese characters (which we shall
refer to as � and � ), a set of strokes, or, trivially, as a collection of pixels. Note that the
second option is only available to a system previously exposed to various combinations of
Chinese characters. Indeed, the decision whether to represent this image as

� ����� , � �����	� ,� �
���������	� or otherwise can only be made in a principled manner on the basis of prior
exposure to related images.

According to Barlow’s [1] insight, the tally of suspicious coincidences offers a useful prin-
ciple: two candidate fragments � and � should be combined into a composite object ���
if the probability of their joint appearance ����
����� is much higher than ������������� , which
is the probability expected in the case of their statistical independence. This criterion may
be compared to the Minimum Description Length (MDL) principle, which has been pre-
viously discussed in the context of object representation [2, 3]. In a simplified form [4],
MDL calls for representing ��� explicitly as a whole if ����
��������������������� , just as
the principle of suspicious coincidences does.

While the MDL criterion ������������������������������ certainly indicates a suspicious coinci-



dence, we believe that additional probabilistic considerations may be used in setting the
degree of association between � and � . One example is the possible perfect predictabil-
ity of � from � and vice versa, as measured by �������  ��
	��� � ������ ��� �������� ��� � .
If �������  ��� , then � and � are perfectly predictive of each other and should really be
coded by a single symbol, whereas the MDL criterion may suggest merely that some associ-
ation between the representation of � and that of � be established. In comparison, if � and
� are not perfectly predictive of each other ( ������� �� � ), there is a case to be made in fa-
vor of coding them separately to allow for a maximally expressive representation, whereas
MDL may actually suggest a high degree of association (if ������������������������������ � � ).
In this study we investigated whether the human visual system uses a criterion based on�������  alongside MDL while learning to represent composite objects.

AB

Figure 1: Left: How many objects are contained in image ��� ? Without prior knowledge,
a reasonable answer, which embodies a holistic bias, should be “one.” Right: In this set
of ten images, ��� appears five times as a whole; the other five times a fragment wholly
contained in ��� appears in isolation. This statistical fact provides grounds for considering
��� to be composite, consisting of two fragments (call the upper one � and the lower one
� ), because ������ ��� ��� , but ������ ��� ��� ��� � � .

To date, psychophysical explorations of the sensitivity of human subjects to stimulus statis-
tics tended to concentrate on means (and sometimes variances) of the frequency of various
stimuli. One recent and notable exception is the work of Saffran et al. [5], who showed that
infants (and adults) can distinguish between “words” (stable pairs of syllables that recur in
a continuous auditory stimulus stream) and non-words (syllables accidentally paired with
each other, the first of which comes from one “word” and the second – from the follow-
ing one). Thus, subjects can sense (and act upon) differences in transition probabilities
between successive auditory stimuli. In the visual domain, Fiser and Aslin [6] presented
subjects with geometrical shapes in various configurations, and found effects of conditional
probabilities of shape co-occurrences, in a task that required the subjects to decide in each
trial which of two simultaneously presented shapes was more familiar.

The present study was undertaken to investigate the relevance of the various notions of
statistical independence to the unsupervised learning of complex visual stimuli by human
subjects. Our experimental approach differs from that of [6] in several respects. First,
instead of explicitly judging shape familiarity, our subjects had to verify the presence of
a probe shape embedded in a target. This objective task, which produces a pattern of
response times, is arguably better suited to the investigation of internal representations
involved in object recognition than subjective judgment [7]. Second, the estimation of
familiarity requires the subject to access in each trial the representations of all the objects
seen in the experiment; in our task, each trial involved just two objects (the probe and
the target), potentially sharpening the focus of the experimental approach. Third, with
the subjects’ sensitivity to conditional probabilities demonstrated by Fiser and Aslin, we
decided to concentrate on specific predictions generated by the various notions of stimulus
independence, such as MDL and �������  .



2 The experiment

Subjects were presented with two blocks of yes/no trials (“is the probe contained in
the target?”; cf. [7]), one before and the other after exposure to a set of stimuli com-
posed of Chinese characters such as those in Figure 1, right. The conditional probabil-
ities of the appearance of individual characters were controlled. Two characters �����
could be paired, in which case we had ������ ��� � ������ ��� � � . Alternatively,
����� could be unpaired, with ������ ��� � � , ������ ��� � � ��� . In either case, we had
����
������� ����������������� ��� . Thus, for paired �
��� the minimum conditional probability�������  � 	 �� � ������ ��� �������� ��� � � � and the two characters were perfectly predictable
from each other, whereas for unpaired ����� �������  � � � � , and they were not. In the lat-
ter case ��� probably should not be represented as a whole. Would the subjects’ behavior
reflect the use of this, rather extreme, criterion of independence, or would they employ a
criterion related more closely to the principles of suspicious coincidences or MDL?

Let us assume that the subjects tally the conditional probabilities of various pairings of po-
tential standalone fragments [6], and, furthermore, that they maintain explicit and persistent
representations for fragments or for fragment groups, as suggested by the independence cri-
teria. Such representations should then support a kind of priming [8]: the response time
in trials in which the probe is explicitly represented should be faster than in trials in which
the probe is represented in a distributed fashion. The representations, however, can only
be acquired by the subjects through the process of assimilating the training set. This leads
to the main prediction of the study: the subjects should respond faster after exposure to
the training set than before — but only in those trials in which the probe (embedded in the
target; see Figure 2, left) is assigned a separate and explicit representation. The experiment,
therefore, hinges on a comparison of the patterns of verification response times before and
after exposure to the training set.

The experiment involved two types of probe conditions: PTYPE=Fragment, or ���
����� (with ��� ���	� as the reference condition), and PTYPE=Composite, or ���
�
����� (with ��� � ���	� as reference). In this notation (see Figure 2, left), � and �
are “familiar” fragments with controlled minimum conditional probability �������  , and
� �� ��� are novel random fragments. The experiment consisted of a baseline session,
followed by training exposure (unsupervised learning), followed in turn by the test session
(Figure 2, right). In the baseline and test sessions, the subjects had to indicate whether
the probe was contained in the target. In the training session, the subjects had to note the
order in which the three characters appeared on the screen. Fourteen subjects, none of
them familiar with the Chinese writing system, participated in the experiment in exchange
for course credit.

3 Results

We carried out a mixed-effects repeated measures analysis of variance (SAS procedure
MIXED [9]) for �	��� and SPEED-UP, with PTYPE and �������  as independent variables.
The dependent variables are defined and the results are summarized in Figure 3.

The effect of training on SPEED-UP (Figure 3, top left panel) was strikingly different for
composite probes with  � � ( � � � ��� ) compared to the other three conditions ( ��� � ��� on
the average). ANOVA revealed significant main effects of PTYPE ( ����� ��� � � �

 � �"!�� � � � � ),����
����� ( �#�$� ��� �&% � � � �'! � � � �
 
) and the interaction ( �(��� ��� �)% ���

* �"!�� � � �,+ ).
An analysis of the �	��� data revealed that subjects’ response was, on the average, slowed
down by composite probes (mean �	�-� �/. *0 �1� ), compared to fragment probes
( � * ��� ). In other words, it took relatively much longer to determine correctly that the
probe was contained in the target (compared to the time to determine that it was not) if the
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Figure 2: Left: Illustration of the probe and target composition for the two levels of PTYPE
(Fragment and Composite). For convenience, the various categories of characters that
appeared in the experiment are annotated here by Latin letters. Specifically, � , � stand for
characters with controlled �������  � 	��� � ������ ��� �������� ��� � ; the training set was con-
structed with �������  ��� � � for some pairs, and �������  � � for others. � �� �$� stand for
characters that appeared only once throughout the experiment. In negative or reference
trials, the correct answer was no (i.e., probe not contained in target); in positive or test
trials, the correct answer was yes. �	��� was defined as ���
� �������������
	�� � . ���
��� �� � � ,
which makes it positive if the response time is shorter in the test condition relative to the
reference condition. Right Top: The structure of a part verification trial (same for base-
line and test phases). The probe stimulus was followed by the target (each presented for� � �

��� ; a mask was shown before and after the target). The subject had to indicate whether
or not the former was contained in the latter (in this example, the correct answer is yes). A
sequence consisting of 64 trials like this one was presented twice: before training (baseline
phase) and after training (test phase). Right Bottom: The structure of a training trial (the
training phase, placed between baseline and test, consisted of 80 such trials). The three
components of the stimulus appeared one by one for � � �

��� to make sure that the subject
attended to each, then together for � � � �1� . The subject was required to note whether the
sequence unfolded in a clockwise or counterclockwise order.

probe was a composite object. It is not this bias against composite probes, however, but
the differential effect of training on �	�-� in the four conditions (two levels of PTYPE �
two levels of �������  ) that is relevant to testing the �������  hypothesis. Indeed, training
precipitated a drastic change in the effect of composite probes with �������  � � , from. + � �

��� in the baseline phase to � ��� in the test phase (Figure 3, top middle and right);
no such change was found in the other conditions.1 Note that it is in this condition that
the two constituents of the target are perfectly predictable from each other, providing the
subjects’ visual system with the greatest incentive to form a unified representation of the
target, and thereby boosting the effect of composite probes.

This behavior conforms to the predictions of the �������  principle: subjects seem
to have represented paired characters together, while splitting apart unpaired ones.
Note that the suspicious coincidence ratio was the same in both cases, ��������� ��
����
������� ����������������� � � . Thus, the subjects in this experiment proved to be sensi-
tive to the �������  measure of independence, over and above the (constant-valued) MDL-
related criterion, according to which the propensity to form a unified representation of two
fragments, � and � , should depend on ��������� [1, 4].

1This observation is supported by the ANOVA, which revealed a highly significant PHASE �
PTYPE ������� �"! interaction ( #%$�& $�')(+*,*.- /�*,0�13254�- 4,476�8 ). The other significant effects were
PTYPE ( # $�& $�' (:9.;�- ;,;�0�1<2=4�- 4,4,4�* ), PHASE � PTYPE ( # $�& $�' (?>�- @,/�0�1<2A4�- 4.4,>76 ), and a marginal
PHASE ������� �"! interaction ( # $�& $�' (?9�- 8.9�0�1�2A4�- 4,; ).
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Figure 3: Top row: Results from human subjects. The effects of training on ��� and on
�	��� (least-squares estimates of means and standard errors, computed by the LSMEANS
option of SAS procedure MIXED), plotted vs. �������  , by probe type. Left: SPEED-
UP, defined as the difference in ��� between baseline and test phases. The SPEED-UP for
composite probes (solid line) with �������  � � exceeded that in the other conditions by
more than + � � ��� . Middle and Right: �	�-� , defined as the difference in ��� between
negative and positive trials for each condition; the two plots correspond to baseline and
test phase, respectively. Following training, �	��� was significantly boosted for composite
probes and somewhat reduced for fragment probes for �������  � � ; no such effect was
found for �������  � � ��� . All these findings are consistent with the notion that exposure
to character pairs with �������  ��� , but not to those with �������  ��� � � , caused subjects
to treat the members of a pair as a single object by forming an integral representation of
the two; the existence of such representations manifested itself in an increased speed-up
effect for composite, but not fragmented, probes. Bottom row: Results of a simulated
experiment, in which a model outlined in section 4 was given the same 80 training images
as the human subjects. The difference of reconstruction errors for probe and target served
as the analog of RT; baseline measurements were conducted on half-trained networks. The
error bars are smaller than the symbols in this plot.

We are currently studying the effects of varying ��� � � � independently of �������  . Because
of the nature of these variables, a mixed within- and between-subjects design must be
used, which requires a large number of subjects. Preliminary results involving all four
combinations of � ������� � � � � �

 � � �
 , � and �������  � � � ��� � � � � � , obtained with 17 subjects

(about four subjects per condition) indicate that the effects of �������  found in the first
experiment are much stronger for ��������� � � �

 , 
than for �,� � � � ��� � �

 
. This suggests that

the influence of the two criteria, �������  and � � � � � , on the representation of composite
objects is synergistic.



4 An unsupervised learning model and a simulated experiment

The ability of our subjects to construct representations that reflect the probability of co-
occurrence of complex shapes has been replicated by a novel unsupervised learning model,
described elsewhere [10]. The model (Figure 4) is based on the following observation: an
auto-association network fed with a sequence of composite images in which some frag-
ment/location combinations are more likely than others develops a non-uniform spatial
distribution of reconstruction errors; smaller errors appear in those locations where the im-
age fragments recur. This information can be used to form a spatial receptive field for the
learning module, while the reconstruction error can signal its relevance to the current input
[11, 12]; different modules learn to represent different “what+where” combinations through
competition. The performance of this model, trained on precisely the same sequence of
triplets of Chinese characters as our human subjects, is shown in Figure 3, bottom row. The
differential effects of �������  for the two probe kinds (Fragment and Composite) are
the same for humans and for the model.2

relevance
mask (RF)

error

auto−
associator

adapt

input input

−

reconstructed

ensemble of modules

err i

Figure 4: Left: Functional architecture of a fragment module. The module consists of
two adaptive components: a reconstruction network, and a relevance mask, which assigns
different weights to different input pixels. The mask modulates the input multiplicatively,
determining the module’s receptive field. Given a sequence of images, several such mod-
ules working in parallel learn to represent different categories of spatially localized patterns
(fragments) that recur in those images. The reconstruction error serves as an estimate of
the module’s ability to deal with the input ([11, 12]; in the error image, shown on the
right, white corresponds to high values). Right: The Chorus of Fragments (CoF): a bank
of fragment modules, each tuned to a particular shape category, appearing in a particular
location [4]. The unsupervised competitive procedure used to learn the representations of
the various fragments (“what”) and the corresponding mask weights (“where”) is described
in [10].

5 Discussion

Human subjects have been previously shown to be able to acquire, through unsupervised
learning, sensitivity to transition probabilities between syllables of nonsense words [5] and
between digits [13], and to co-occurrence statistics of simple geometrical figures [6]. Our

2The pattern of mean “RT” produced by the model lacks the bias in favor of fragment probes
exhibited by humans; this effect is orthogonal to the issue of probability tallying, and is, therefore,
outside the scope of the present work.



results demonstrate that subjects can also learn (without awareness; cf. [13]) to treat combi-
nations of complex visual patterns differentially, depending on the conditional probabilities
of the various combinations, accumulated during a short unsupervised training session.

In the present study, the criterion of suspicious coincidence between the occurrences
of � and � is met in both ������ ��� � � ��� and ������ ��� � � conditions: in each case,
����
������� ����������������� � � . Yet, the subjects’ behavior indicates a significant holistic
bias: the representation tends to be monolithic ( ��� ), unless imprefect mutual predictabil-
ity of the potential fragments ( � and � ) provides support for representing them separately.
A similar holistic bias, operating in a setting where a single encounter with a stimulus can
make a difference, is found in language acquisition: an infant faced with an unfamiliar
word will assume it refers to the entire shape of the most salient object [14].

The computationally challenging unsupervised learning task faced by our subjects (and our
model) can be addressed using information-theoretic and probabilistic methods [15, 16],
including MDL [2]. Our current research focuses on further elucidation of the manner in
which subjects process statistically structured data, and on development of the new model
of structure learning outlined in the preceding section [10].
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